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Abstract 

Let A  be a unital algebra and ( ) N∈δ= iiD  be a family of linear mappings from 

A  into itself such that .0 Aid=δ  In this paper, we prove that if 

( ) ( ) ( ) 0=δδδ∑ =++
CBA kjinkji

 for any CBA ,, A∈  with 0== BCAB  and 

( ) 0=δ In  for all ,1≥n  then the restriction ( ) N∈δ= iiD  to the subalgebra R  

generated by all idempotents of A  is a higher derivation. We also show that this 
kind of mappings is a higher derivation on A  under some conditions. 

1. Introduction 

Let A  be a unital algebra. Let =D  ( ) N∈δ ii  be a family of           

linear mappings from A  into itself such that .0 Aid=δ  D is called a 

higher derivation, if ( ) ( ) ( )BAAB jinjin δδ=δ ∑ =+
 for each N∈n         

and DBA ;, A∈  is called a Jordan higher derivation, if 

( ) ( ) ( )AAA jinjin δδ=δ ∑ =+
2  for each N∈n  and .A∈A  Note that 1δ  
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is a Jordan derivation, if ( ) N∈δ= iiD  is a Jordan higher derivation. It is 

well known that every derivation is a Jordan derivation and the converse 
in general is not true. In [8], Herstein showed that every Jordan 
derivation from a 2-torsion free prime ring into itself is a derivation. In 
[2], Brešar generalized Herstein’s result to 2-torsion free semiprime rings. 
Likewise, every higher derivation is a Jordan higher derivation and the 
converse in general is not true. In [6], Ferrero and Haetinger generalized 
Brešar’s result to the Jordan higher derivations, they showed that every 
Jordan higher derivation of a 2-torsion free semiprime ring is a higher 
derivation. For other related results, see [14, 15]. 

In general, there are two directions in the study of the local actions of 
derivations of operator algebras. One is the local derivation problem (for 
example, see [5, 10, 11]). The other is to study the conditions under which 
derivations of operator algebras can be completely determined by the 
action on some sets of operators (for example, see [1, 4, 9, 12]). In [3], 
Brešar study the local actions of derivations. He proved that if δ  is an 
additive mapping from a unital ring A  to a unital A -bimodule M  such 
that ( ) 0=δ CBA  for all ,0== BCAB  then the restriction δ  to the 
subring R  generated by all idempotents of A  is a derivation. In [12], Li 
and Pan showed that under some conditions, this kind of mappings is a 
generalized derivation on a unital algebra .A  In Section 2, we generalize 
Brešar’s result and Li’s result to the case of higher derivations, 
respectively. 

2. Main Results 

In this section, we always assume that A  is a unital algebra. 

Let ( ) N∈δ= iiD  be a family of linear mappings from A  into itself. 

We say that ( ) N∈δ= iiD  satisfies the condition ( )∗  if for each ,A∈A  

any idempotents A∈QP,  and all ;N∈n  

( ) ( ) ( ) ( ) ( )AQPQPAPAQ ji
nji

ji
nji

n δδ+δδ=δ ∑∑
=+=+
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( ) ( ) ( ),QAP kji
nkji

δδδ− ∑
=++

 ( )∗  

and  

( ) ,0=δ In       for all .1≥n  

In order to prove our main result, we first show two lemmas. 

Lemma 2.1. Suppose that ( ) N∈δ= iiD  is a family of linear mappings 

from A  into itself satisfying condition ( ).∗  Then for any idempotents 

mPP ,,1 L  in ,A  

(1) ( ) ( ) ( ),211 mjinjimn PPPPP LL δδ=δ ∑ =+
 

(2) ( ) ( ) ( ).111 mjminjimn PPPPP δδ=δ −=+∑ LL  

Proof. We only prove (1), for the proof of (2) is analogous. 

When ,2,1=m  by the condition ( ),∗  (1) is true. Suppose that if 

,tm =  (1) is true. 

For ,1+= tm  by the condition ( ),∗  it follows that 

( ) ( ) ( ) ( ) ( )1211111 +
=+

+
=+

+ δδ+δδ=δ ∑∑ ttji
nji

tjti
nji

tn PPPPPPPPP LLL  

( ) ( ) ( )121 +
=++

δδδ− ∑ tktji
nkji

PPPP L  

( ) ( ).121 +
=+

δδ= ∑ ttji
nji

PPPP L  

This concludes the proof.  

Lemma 2.2. Suppose that ( ) N∈δ= iiD  is a family of linear mappings 

from A  into itself satisfying condition ( ).∗  Then for any idempotents 

sm QQPP ,,,,, 11 LL  in A  and every ,A∈A  
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( )smn QAQPP LL 11δ  

( ) ( ) ( ) ( )sjmi
nji

sjmi
nji

QAQPPQQAPP LLLL 1111 δδ+δδ= ∑∑
=+=+

 

( ) ( ) ( ).11 skjmi
nkji

QQAPP LL δδδ− ∑
=++

 (2.1) 

Proof. We first show that for any positive integer m, 

( ) ( ) ( ) ( ) ( )AQPPQAPPAQPP jmi
nji

jmi
nji

mn δδ+δδ=δ ∑∑
=+=+

LLL 111  

( ) ( ) ( ).1 QAPP kjmi
nkji

δδδ− ∑
=++

L  (2.2) 

If ,1=m  by the condition ( ),∗  (2.2) is true. Suppose that if ,tm =  

(2.2) is true. 

For ,1+= tm  by the condition ( )∗  and Lemma 2.1, it follows that 

( )AQPP tn 11 +δ L  

( ) ( ) ( ) ( )AQPPPQAPP tji
nji

jti
nji

12111 +
=+

+
=+

δδ+δδ= ∑∑ LL  

( ) ( ) ( )QAPPP ktji
nkji

δδδ− +
=++

∑ 121 L  

( ) ( ) ( ) ( ) ( )AQPPPQAPP ktji
nkji

jti
nji

δδδ+δδ= +
=++

+
=+

∑∑ 12111 LL  

( ) ( ) ( ) ( )QAPPP lktji
nlkji

δδδδ− +
=+++

∑ 121 L  

( ) ( ) ( ) ( )AQPPPQAPP jti
nji

jti
nji

δδ+δδ= +
=+

+
=+

∑∑ 12111 LL  

( ) ( ) ( ).121 QAPPP kjti
nkji

δδδ− +
=++

∑ L  
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Now, we show (2.1) is true. 

If ,1=s  by (2.2), (2.1) is true. Suppose that if ,ts =  (2.1) is true. 

For ,1+= ts  by (2.2), the condition ( )∗  and Lemma 2.1, it follows 

that 

( )111 +δ tmn QAQPP LL  

( ) ( ) ( ) ( )1121111 +
=+

+
=+

δδ+δδ= ∑∑ tjmi
nji

tjtmi
nji

QAQPPPQQAQPP LLLL  

( ) ( ) ( )1121 +
=++

δδδ− ∑ tktjmi
nkji

QQAQPPP LL  

( ) ( ) ( )111 +
=++

δδδ= ∑ tktjmi
nkji

QQQAPP LL  

( ) ( )1121 +
=+

δδ+ ∑ tjmi
nji

QAQPPP LL  

( ) ( ) ( ) ( )111 +
=+++

δδδδ− ∑ tltkjmi
nlkji

QQQAPP LL  

( ) ( ) ( ) ( )1121111 +
=+

+
=+

δδ+δδ= ∑∑ tjmi
nji

tjmi
nji

QAQPPPQQAPP LLLL  

( ) ( ) ( ).111 +
=++

δδδ− ∑ tkjmi
nkji

QQAPP LL  

This concludes the proof.  

Theorem 2.3. Let A  be a unital algebra and B  be the         
subalgebra generated by all idempotents in .A  If ( ) N∈δ= iiD  is a family 

of linear mappings from A  into itself such that ( ) =δ ABCn   

( ) ( ) ( )CBA kjinkji δδδ∑ =++
 for any A∈CBA ,,  with =AB  0=BC  

and ( ) 0=δ In  for all ,1≥n  then the restriction of ( ) N∈δ= iiD  to B  is a 

higher derivation. 
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Proof. Let P and Q be two idempotents in .A  Since for every ,A∈A  

 ( ) ( ) ,0=−=− QIPAQPAQPI  

( ) ( ) ( ) ,0=−−=− QIAQPIAQPIP  

 ( ) ( ) ( ) ,0=−=−− QQIPAQIPAPI  

 ( ) ( ) ( ) ( ) ,0=−−=−− QQIAPIQIAPIP  

we have 

( ) ( ) ( ) ,0=−δδ−δ∑
=++

QIPAQPI kji
nkji

 

( ) ( )( ) ( ) ,0=−δ−δδ∑
=++

QIAQPIP kji
nkji

 

( ) ( )( ) ( ) ,0=δ−δ−δ∑
=++

QQIPAPI kji
nkji

 

( ) ( ) ( )( ) ( ) .0=δ−−δδ∑
=++

QQIAPIP kji
nkji

 

For convenience, we rewrite these identities as 

 ( ) ( ) ( ) ( ) ( )PAQPQPAQPAQ ji
nji

ji
nji

n δδ+δδ=δ ∑∑
=+=+

 

 ( ) ( ) ( ),QPAQP kji
nkji

δδδ− ∑
=++

 

( ) ( ) ( ) ( )PAQPAQP ji
nji

ji
nji

δδ−=δδ− ∑∑
=+=+

 

 ( ) ( ) ( )QAQP kji
nkji

δδδ− ∑
=++

 

 ( ) ( ) ( ),QPAQP kji
nkji

δδδ+ ∑
=++

 

( ) ( ) ( ) ( )QPAQQPA ji
nji

ji
nji

δδ−=δδ− ∑∑
=+=+
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( ) ( ) ( )QPAP kji
nkji

δδδ− ∑
=++

 

( ) ( ) ( ),QPAQP kji
nkji

δδδ+ ∑
=++

 

( ) ( ) ( ) ( ) ( ) ( )QPAPQAP kji
nkji

kji
nkji

δδδ=δδδ ∑∑
=++=++

 

( ) ( ) ( )QAQP kji
nkji

δδδ+ ∑
=++

 

( ) ( ) ( ).QPAQP kji
nkji

δδδ− ∑
=++

 

Note that the sum of the right-hand sides of these four identities is 0. 
Therefore, the sum of the left-hand sides must be 0. Hence, 

( ) ( ) ( ) ( ) ( )QPAAQPPAQ ji
nji

ji
nji

n δδ+δδ=δ ∑∑
=+=+

 

( ) ( ) ( ).QAP kji
nkji

δδδ− ∑
=++

 

By Lemma 2.2, we have for any idempotents sm QQPP ,,,,, 11 LL  in A  
and every ,A∈A  

( )smn QAQPP LL 11δ  

( ) ( ) ( ) ( )sjmi
nji

sjmi
nji

QAQPPQQAPP LLLL 1111 δδ+δδ= ∑∑
=+=+

 

( ) ( ) ( ).11 skjmi
nkji

QQAPP LL δδδ− ∑
=++

 

Setting IA =  in the above relation, we obtain 

( ) ( ) ( ).1111 sjmi
nji

smn QQPPQQPP LLLL δδ=δ ∑
=+

 

This concludes the proof.  
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Let M  be an A -module and J  be an ideal of .A  We say that J  is a 
separating set of ,M  if for every 0,, =∈ JM mnm  implies 0=m  and 

0=nJ  implies .0=n  

Theorem 2.4. Let J  be a separating set of .A  Suppose J  is 
contained in the linear span of the idempotents in .A  If ( ) N∈δ= iiD  is a 

family of linear mappings from A  into itself satisfying condition ( ),∗  then 
( ) N∈δ= iiD  is a higher derivation. 

Proof. When ,1=n  by [7, Theorem 2.2], we have 1δ  is a derivation. 
Now we assume that 

( ) ( ) ( ),BAAB ji
mji

m δδ=δ ∑
=+

 

for all A∈BA,  and for all .1 nm <≤  

Since J  is contained in the linear span of the idempotents in ,A  by 
the condition ( ),∗  it follows that for any ,, J∈TS  

( ) ( ) ( ).TSST ji
nji

n δδ=δ ∑
=+

 

For any J∈TS,  and .A∈A  Since J  is an ideal of ,A  it follows that 

( ) ( )( ) ( ) ( ).TSATSASAT ji
nji

nn δδ=δ=δ ∑
=+

 (2.3) 

On the other hand, by the condition ( ),∗  

( ) ( ) ( ) ( ) ( )ATSTSASAT ji
nji

ji
nji

n δδ+δδ=δ ∑∑
=+=+

 

( ) ( ) ( ).TAS kji
nkji

δδδ− ∑
=++

 (2.4) 

Combining (2.3) and (2.4), we have 

( ) ( ) ( ) ( ) ( )TASATS kji
nkji

ji
nji

δδδ−δδ= ∑∑
=++=+

0  
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( ) ( ) ( ).TASATS ji
nji

n δδ−δ= ∑
=+

 

Since J  is a separating set of ,A  it follows that 

( ) ( ) ( ).TAAT ji
nji

n δδ=δ ∑
=+

 

For any A∈BA,  and for any ,J∈T  we have 

( ) ( ) ( ) ( ) ( ) ( )TBABTAABT kji
nkji

ji
nji

n δδδ=δδ=δ ∑∑
=++=+

 

 ( ) ( ) ( ) ( ).

1

TABTBA ji
nji

ji
nji

j

δδ+δδ= ∑∑
≥
=+=+

 

On the other hand, 

( ) ( ) ( ) ( ) ( ) ( ).

1

TABTABTABABT ji
nji

nji
nji

n

j

δδ+δ=δδ=δ ∑∑
≥
=+=+

 

So, we have 

( ) ( ) ( ) .0=δδ−δ ∑
=+

TBATAB ji
nji

n  

Since J  is a separating set of ,A  it follows that 

( ) ( ) ( ).BAAB ji
nji

n δδ=δ ∑
=+

 

Hence, ( ) N∈δ= iiD  is a higher derivation.  

A linear mapping f from A  to M  is called a left (resp., right) 
multiplier, if ( ) ( )afaf 1=  (resp., ( ) ( )1afaf = ), for every .A∈a  Clearly, 
left multipliers are left-annihilator-preserving and right multipliers are 
right-annihilator-preserving. With certain hypotheses on A  and ,M  
multipliers are the only annihilator-preserving maps from A  to M  (see 
[12]). When this happens, we have the following theorem: 
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Theorem 2.5. Let A  be a unital algebra. Suppose that the only linear 
left-annihilator-preserving maps from A  into itself are left multipliers 
and the only linear right-annihilator-preserving maps from A  into itself 
are right multipliers. If ( ) N∈δ= iiD  is a family of linear mappings     

from A  into itself such that ( ) ( ) ( )∑ =++
=δδδnkji kji CBA 0  for any 

A∈CBA ,,  with 0== BCAB  and ( ) 0==δ In  for all ,1≥n  then 
( ) N∈δ= iiD  is a higher derivation. 

Proof. When ( ) 0,1 1 =δ= CBAn  for any A∈CBA ,,  with =AB  

.0=BC  By [12, Proposition 1.1], we have 1δ  is a derivation. Now we 

assume that 

( ) ( ) ( ),TSST ji
mji

m δδ=δ ∑
=+

 

for all A∈TS,  and for all .1 nm <≤  Then 

  ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )CBACBACBA ji
nji

kji
nkji

kji
nkji

k

δδ+δδδ=δδδ ∑∑∑
=+=++=++

≥1

 

    ( ) ( ) .CBA ji
nji

δδ= ∑
=+

 

So ( ) ( ) .0=δδ∑ =+
CBA jinji  Fix A∈BA,  with ,0=AB  define a 

mapping f depending on A and B from A  into itself by 

( ) ( ) ( ),BTATf ji
nji

δδ= ∑
=+

 

for any .A∈T  For any ADC ∈,  with ,0=CD  we have BCDABC =  

.0=  So ( ) .0=DCf  By the hypotheses, f is a left multiplier, that is, ( )Sf  

( )SIf=  for any .AS ∈  Thus, 

( ) ( ) ( ) ( )SBABSA ji
nji

ji
nji

δδ−δδ= ∑∑
=+=+

0  
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( ) ( ) ( ) ( ) ( ) ( )SBASBABSA ji
nji

kji
nkji

n

i

δδ−δδδ+δ= ∑∑
=+=++

≥1

 

( ) ( ) ( ) ( ) ( ) ( )SBASBABSA ji
nji

kji
nkji

n

iki

δδ+δδδ+δ= ∑∑
≥≥≥
=+=++
11,1

 

( ) ( )SBA ji
nji

δδ− ∑
=+

 

( ) ( ) ( ) ( )SBASBABSA nji
nji

n

j

δ−δδ−δ= ∑
≥
=+
1

 

( ) ( ) ( ).SBABSA ji
nji

n δδ−δ= ∑
=+

 

Let 

( ) ( ) ( ) ( ).STTSTg ji
nji

n δδ−δ= ∑
=+

 

Then ( ) .0=BAg  By the hypotheses, g is a right multiplier, that is, 

( ) ( )1TgTg =  for any .AT ∈  Since ( ) ,0=Ig  we have ( ) .0=Tg  Thus, 

( ) ( ) ( ).STTS ji
nji

n δδ=δ ∑
=+

 

Hence, ( ) N∈δ= iiD  is a higher derivation.  
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